DEFENCE SERVICES ACADEMY ENTRANCE EXAMINATION MATHEMATICS

Date: 18-8-2019	Time Allowed: 2 Hours

ANSWER ALL QUESTIONS PART (A)

1.	Choose the correct or the most appropriate answer for each question.						
	Write the letter of the correct or the most appropriate answer. (22 Marks)						
(1)					Then $(g \circ f)^{-1}(5) =$		
	A1	B. 3	C. 4	D. 5	E. 0		
(2)	When $(2x + 1)$	$(x^{2019} + (x - 1))^{2019}$	² is divided b	x + 1, the re	emainder is 5, then		
	k =						
	A1	B. 1	C. -3	D. 6	E. 3		
(3)	If ${}^{n}C_{2} = 66$,	then n=					
	A. 9	B. 10	C. 11	D. 12	E. 13		
(4)	The product of the A.M. and G.M. between 4 and 16 is						
	A. 40	B. 60	C. 70	D. 80	E. 160		
(5)	Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}$ be a matrix and given that $det(xA) = 4$. Then $x = 4$						
	A. 0	B. ±1	C. ±2	D. 3	E. 4		
(6)	If A is an ev	ent such that	$6[P(A)]^2 = P(n$	ot A), then P(A)=		
	A. $\frac{1}{2}$	B. $\frac{1}{3}$	C. $\frac{1}{6}$	D. $\frac{2}{3}$	E. none of these		
(7)	Chords AB and CD of a circle intersect at P within the circle. If AP=5,						
	PB=2, CP=x and $PD=x+3$, then $x=$						
	A. 2	B. 3	C. 4	D. 5	E. 6		
(8)	The areas of two similar triangles are in the ratio 4:9. One side of the						
	smaller triangle is 4. The corresponding side of the other triangle is						
	A. 2	B. 3	C. 4	D. 5	E. 6		
(9)	If \vec{a} , \vec{b} are non-parallel and non-zero such that $(3x + y)\vec{a} + (y - 3)\vec{b} = \vec{0}$, then						
	$\mathbf{x} =$						
	A. 1	B1	C. 3	D. -3	E. none of these		
(10)	What is the smallest value of x for which $\tan 3x = -1$?						
	A. 15°	B. 45°	C. 75°	D. 90°	E. 105°		
(11)	If $f(x)=4x^2 + e^{-3x}$, then $f''(0)=$						
	A17	B. 8	C. 17	D8	E3		

PART (B)

2. (a) Functions $f: R \to R$ and $g: R \to R$ are defined by f(x)=2x-1 and g(x)=4x+3. Find the value of x for which $(f^{-1} \circ g)(x)=(g^{-1} \circ f)(x)+6$.

(6 marks)

- (b) The expression $x^3 + ax^2 + bx + 3$ is exactly divisible by x + 3 but it leaves a remainder of 91 when divided by x 4. What is the remainder when it is divided by x + 2? (7 marks)
- 3. (a) In the expansion of $(1-2x)^n$, the sum of the coefficients of x and x^2 is 16. Given that n is positive, find the value of n and the coefficient of x^3 .

(6 marks)

- (b) Use a graphical method to find the solution set of the inequation 2x(x-1) < 3-x and illustrate it on the number line. (7 marks)
- 4. (a) The product of first three terms of a G.P. is 1000. If we add 6 to its second term, 7 to its third term and its first term is not changed, then three terms form an A.P.. Find the first three terms of the G.P. . (6 marks)
 - (b) Find the inverse of the matrix $A = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$ and investigate whether or not the squares of A and A^{-1} are inverses of each other. (7 marks)
- 5. (a) How many 3-digit numerals can you form from 3,0,1 and 6 without repeating any digit? Find the probability of an even number and find the probability that a numeral which is divisible by 3. (6 marks)
 - (b) PQR is a triangle in which PQ=PR. S is a point inside the triangle such that ∠SPQ=∠SQR. T is the point on QS such that PT=PS. Prove that PQRT is cyclic. (7 marks)
- 6. (a) P,Q,R,S are four points in order on a circle O, so that PQ is a diameter. PS and QR meet at T. If $\alpha(PQRS)=3\alpha(\Delta TRS)$, prove that $\angle ROS=60^{\circ}$.

(6 marks)

- (b) Find the matrix which will translate through 3 units horizontally and 1 unit vertically followed by a rotation through 45°, and find the map of the point (1, 2). (7 marks)
- 7. (a) If $x+y+z=\pi$, prove that $\sin 2x + \sin 2y + \sin 2z = 4\sin x \sin y \sin z$.

(6 marks)

(b) If the perimeter of a rectangle is 24 m, show that the area is the greatest when this rectangle is a square and find the maximum area. (7 marks)