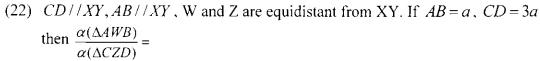
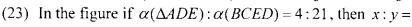
DEFENCE SERVICES TECHNOLOGICAL ACADEMY ENTRANCE EXAMINATION MATHEMATICS

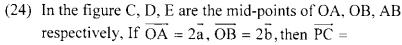
Date: 18-8-2018 **Time Allowed: 2 Hours**

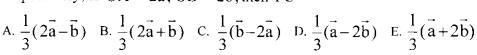

	Attempt All Questions						
1.		Choose the correct or the most appropriate answers for each question. Write only the letter of the inswer. (30 Mark)					
	(1)	$f: R \mapsto R, g: R$	$\rightarrow R, f(x) = 3 +$	$2x^2, g(x) = 2x + 1$	l, g maps f(x) onto	35, then $x =$	
		A . 7	B. 3	C. $\pm\sqrt{7}$	D. ± 3	E. $\pm\sqrt{3}$	
	(2)	$f: R \mapsto R, f(x)$	$)=2^{x} . If (f.f) (a)$	a) = 256, then $a =$	=		
		A. 1	B. 2	C. 3	D. 0	E1	
(3) A function f is defined by $f: x \mapsto \frac{2x+2}{x-1}, x \neq 1$. Then $f^{-1}(3)$ is							
		A. 2	В. 3	x−1 C. 4	D. 5	E. 6	
	(4)			- ·			
	(1)	Given that $(3x+k)^3 + (4x-7)^2$ has a remainder 33 when divided by $x-3$ then $k = A.2$ B2 C. 7 D7 E11					
	(5)		$06 + (2x + 1)^2$ i		2 remainder is 10,		
		A. 1 only	B1 only	C. 3 only	D. 3 or 1	E1 or -3	
	(6)		$x^3 + x^2 - 11x + 4$ 1		S S 4		
				C. x+2	D. $x+1$	E. x + 4	
(7) In the expansion of $(2x - \frac{1}{2}y)^6$, the coefficient of x^3y^3 is							
		A20	В80	C. 20	D. 80	E40	
	(8)	In the expansion	of $(1+kx)^{20}$, the	e coefficient of x	2 is 19. The positi	ye value of k is	
		A. $\frac{1}{10}$	B. $\frac{1}{\sqrt{10}}$	C. 10	D : $\sqrt{10}$	E. $-\frac{1}{\sqrt{20}}$	
	(9)	The solution set in R for the inequation $x^2 - 4x + 4 < 0$ is					
	(-)		B. $\{x/x > 2\}$		D. R	Е. ф	
(10) The parabola $y = 6x^2 - 13x + 6$ cuts the $X - axis$ at A and B. Then $AB =$					· · · · · · · · · · · · · · · · · · ·		
	(10)	A. 0	B. $-\frac{5}{100}$	$C. = \frac{5}{4}$	D. $\frac{13}{6}$	E. $-\frac{13}{6}$	
	(11)	$1 + \cos 45^{\circ} + \cos$	$s^2 45^{\circ} + cos^3 45^{\circ}$	+ =	6	6	
	()	A. 0 $1 + \cos 45^{\circ} + \cos A$. 1	$B.\sqrt{2} - 2$	C. $2 - \sqrt{2}$	D. $1 + \sqrt{2}$	E. $2 + \sqrt{2}$	
	(12)	For two numbers	s a and b , the A.N	\boldsymbol{A} is 3 and G.M is	s $2\sqrt{2}$. Then a^2 +	$b^2 =$	
		A. 36	B. 16	C. 20	D. 6	E. 24	
	(13) In a certain sequence if $u_1 = 1$, $u_2 = 2$ and $u_{n+2} = u_n u_{n+1}$, then $u_6 = 0$					=	
		A. 12	B. 8	C. 32	D. 6	E. 16	
	(14)	A. 12 $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 4 a$	and $abcd = 192$. T	Then det a² b²	=		
		[c d]		$\begin{bmatrix} c^2 & d^2 \end{bmatrix}$			
		A. 40	D40	C. ± 112	D. 230	E. 144	
	(15)		atrix such that de	If $A = k$ and p is a C. pk^2	a real number then D. p²k²	-	
	(16)	A. pk Let A be an eve				ccur) = q and $0 . If$	
	` /						
the sum to infinity of the G.P $p + p^2 + p^3 +$ is x, then the sum to infinity $q + q^2 + q^3 +$ is					on to minity of the on		
				C 1	D 1	_C 1	
	(17)	Let $D = \{1, 2\}$ or	$D. 1 \pm x$ and $O = \{a, b\}$. If	$C.\frac{-}{x}$	D. $\frac{1}{1-x}$	at random, the probability	
(17) Let $P = \{1, 2\}$ and $Q = \{a, b\}$. If a function from P to Q is defined at random, that it will be a one-to-one correspondence is						at random, the probability	
		A. 1	_	C. $\frac{1}{4}$	D. 1	E. None of these	
(18) The entry of a matrix of order 4 x 5 is chosen at random. The probability that							
	the second row or the third column is						
		A. $\frac{1}{20}$	$B, \frac{1}{5}$	$C.\frac{1}{4}$	D. $\frac{2}{5}$	E. $\frac{2}{90}$	

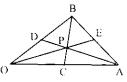
(19) In the figure $\angle A=56^{\circ}$, $\angle F=30^{\circ}$, Then $\angle E=$ B. 30° A. 56° C. 86° D. 38° E. 48°


(20) In the figure AE = 2, AD = 3, DC = 5. Then OC =

B. 5 C. 6 D. 7


(21) In the figure if RM = 6cm, PQ / /MN and $\alpha(\Delta PQR) : \alpha(\Delta RMN) = 9 : 4$ then QR= A. 4cm B. 9cm C. 12cm D. 15cm E. 5cm




- B. $\frac{1}{9}a^2$ C. $\frac{1}{9}$ D. $\frac{1}{3}$

- B. $2:\sqrt{21}$
- C. 2:5 D. 4:25

(25) $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + ... + \cos 180^{\circ} =$

- B. 1

- E. -2

<u>tan 80°</u> – tan 20° (26)1 + tan 80° tan 20°

(27) If $0^{\circ} \le \theta \le 360^{\circ}$, the number of elements in the solution set of $\sin \theta = 0$ is

(28) The distance s cm of a particle at the end of t sec is given by $s = 12 + 30t - 2t^2$. The speed of the particle at the end of 2 sec is

- A. 64 cm/sec
- B. 38 cm/sec
- C. 22 cm/sec
- D. 30 cm/sec
- E. 8 cm/sec

(29) $\lim_{x\to\infty} \frac{\sqrt{x^2+1}-x}{x} =$

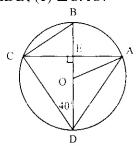
- C. 0
- E. -2

(30) $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} =$

2. Three functions are given as follows; f: $x \to \frac{5x+k}{x-3}$, $x \ne 3$, g: $x \to x-1$, h: $x \to ax^2 + b$

- Find the value of k such that there is only one value of x that satisfies the equation f(x) = x.
- (ii) If $(h.g): x \mapsto 2x^2 4x 1$, find the numerical value of a and b.
- (iii) Using the value of k in part (i), express g.f¹ in similar form.

(10 Marks)


- 3. Given that $f(x) = 2x^3 + 2x^2 3x 5$
 - (i) Evaluate f (1),
 - (ii) Find the remainder when f(x-3) is divided by (x-4),
 - (iii) Deduce the remainder when $f(x^2-6)$ is divided by (x^2-8) .

(10 Marks)

- 4. The second, sixth and eighth terms of an A.P are three distinct consecutive terms of a G.P. Find the common ratio of the G.P. If the sum of the first five terms of G.P is 31, find its first term. (10 Marks)
- 5. If a die rolled 60 times, what is the expected frequency of
 - (i) 4 turns up,
 - prime number turns up (ii)
 - (iii) a factor of 6 turns up.

(10 Marks)

6. O is the centre and DB is the diameter of the circle. The line AC is perpendicular to BD and $\angle BDC = 40^{\circ}$. Find (a) $\angle DCA$, (b) $\angle ADB$, (c) $\angle CAO$. (10 Marks)

7. If $\sin 2\theta \neq 0$, prove that, $\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} = 2$. Hence or otherwise, prove that $\sin^2 3\theta \csc^2 \theta - \cos^2 3\theta \sec^2 \theta = 8\cos 2\theta$

(10 Marks)

8. Given the curve $ax^2 + by^2 = a + b$ where a and b are positive constants, find the coordinates of the points on the curve at which $\frac{dy}{dx} = 1$. (10 Marks)